The ELI-ALPS secondary sources and selected science & applications cases

Dimitris Charalambidis Berlin, 18 October 2013

Main objective of ELI-ALPS:

Establish a unique attosecond facility, which provides to developers and users light sources emitting ultrashort pulses at high repetition rates in the **frequency range between THz (10¹² Hz) and x-ray (10¹⁸-10¹⁹ Hz)**

ELI-ALPS operation centered on the secondary light sources. Wide frequency range of secondary sources will be available at ELI-ALPS.

Laser drivn secondary sources at ELI-ALPS

NEW SZÉCHENYI PLAN

Experimental areas for generating and using secondary sources at ELI-ALPS:

attosecond

LTA: low radiation target area MTA: medium radiation target area HTA: high radiation target area

Building A

- 1) Gas High Harmonic Generation and Attosecond Pulses (GHHG)
- 2) Solid High Harmonic Generation and Attosecond Pulses (SHHG)
- 3) New Concepts for HHG and Attosecond Pulse Generation
- 4) THz sources
- 5) Electron and Ion Acceleration
- 6) User end stations and peripheral instrumentation

Gas High Harmonics Generation → attosecond pulses

Optical ionization and recombination of gas particles

Vacuum Chamber for Harmonics Generation (Ar, Ne, Kr, Xe, He gas jets) Vacuum Chamber for Detectors (photon, electron/ion detectors, characterization of attosecond pulses)

- 100 kHz GHHG for developments (LTA)
- 100 kHz GHHG for users applications (LTA)
- 1 kHz GHHG for developments (LTA)
- 1 kHz GHHG for users applications (LTA)

Goal: conceptual tests, characterization of pulses, basic and applied research

From the Conceptual Designs of GHHG

Solid State High Harmonics Generation (SHHG) \rightarrow attosecond pulses

- Solid density plasma
- Relativistic intensities
- High harmonics

Vacuum Chamber for Harmonics Generation (solid state target)

Vacuum Chamber for Detectors (XUV, electron detectors, characterization attosecond pulses)

- 1 kHz SHHG for developments (LTA)
- 1 kHz SHHG for users applications (LTA)
- Generated by Petawatt laser; for developments (HTA)

Goal: mapping scaling laws for the processes, technologies, characterization of the pulses, basic and applied research

From the Conceptual Designs of SHHG

Commissariat à l'Energie Atomique

Laboratoire d'Optique Appliquée

Spherical grating

Zero order

Novel attosecond source based on Thomson back scattering

Laser backscatters coherently by the electrons. Relativistic Doppler shift results energetic, short wavelength, short pulse duration radiation

Goal: conceptual tests, evaluation of modeling estimations, basic and applied research

From the conceptual design of the novel attosecond source

radiation

3.50 meter

5.50 meter

Possibilities at ELI-ALPS:

- New targets for HHG and test arrangements
- High harmonics originated from Thomson-scattering
- High harmonics generation assisted by THz radiation
- 1 kHz HHG source for developments (LTA)
- HHG generated by Petawatt laser; for developments (HTA)

Goal: high harmonic radiations for source developments, testing new idea, processes and principles

Available at ELI-ALPS:

- User end stations will be available for the users including
 - Stations for gas-phase experiments
 - Surface/material science research
 - Material processing and modification
 - Biology applications
- Peripheral diagnostic target positioning instrumentation will be provided including
 - Radiation and particle spectrometers
 - Reaction microscopes
 - Ion microscopes
 - Auto- and cross-correlates (IR-VIS-XUV-x-ray)
 - Micro/nano positioners, translation stages

From the conceptual design of a versatile instrument

Max Born Institute

THz Sources

University of Pécs, Institute of Physics

Pump laser designed especially for this application (1), 1kHz, 1μ m)

NEW) SZÉCHENYI PLAN

- Speed matching based on optical rectification pumped by femtosecond laser pulses with tilted pulse fronts
- In LiNbO₃ medium
- Single cycle THz pulses
- mJ energy range
- 100 MV/cm focused electrical fields
- Diagnostics:
 - THz power meters, electro-optical switches, cameras
- Applications:
 - Linear THz spectroscopy
 - Nonlinear THz spectroscopy
 - Electron and ion acceleration
 - THz assisted HHG

Electron and Ion Acceleration

"surfing electrons"

Possibilities for Electron and Ion Acceleration at ELI-ALPS:

a) Electron Acceleration:

- 1 kHz, using gas jet target with laser wakefield acceleration (HTA)
- Generating by Petawatt laser, gas jet and thin foils with LWA

b) Ion Acceleration:

Generating by Petawatt laser; on various targets (HTA)

Goal: basic research (medical applications, hadron-therapy, radiobiological applications)

From the Conceptual Designs of **Electron Acceleration:**

SYLOS driven EA

Current status of visualizing structural dynamics

- Medical research:
 - Hadron therapy
 - Laser-driven proton and ion beams
 - Directional needle-like x-ray pulses (damaging a point object)
 - Small-scale facilities
- Biology:
 - Structural/dynamical investigation of proteins
- Physics
- Chemistry
- Material science and material tests
 - Imaging using THz and x-ray pulses

attosecond

X-ray crystallography

Structural & dynamical investigation of proteins

Materials Science

Inspection tools in EUV Lithography

Nano-ESCA system for surface nanospectroscopy

Molecular crystals

Orbital densities for sexiphenyl molecule determined by angleresolved photo-emission

Goal: Versatility, small scale facilities, access to dynamics

AM0 science

Time-resolved photoelectron diffraction & holography

Inner shell multi-photon & strong field physics

Hadron therapy

Bragg-peak

- Bragg-peak: maximum energy loss in the tumor
- Better alignment to the shape of the tumor \Rightarrow saving the healthy living cells
- Well channeled charged hadrons
- Stronger biological effects with heavy ions

Advantage of hadron therapy

Goal

Generating particle beams in the therapic window accelerated by lasers

(70-240 MeV proton energy)

Summary

- 1. Wide range of high-end state-of-the-art secondary sources in one research facility
- 2. Opening possibilities on world-class brand new applications at various research fields:
 - physical
 - medical
 - biological
 - chemical
 - material sciences
- 3. Wide range of interests and participations
 - world-class universities, institutes or research institutes, and industries
 - renowned scientists, researchers and specialists
 - interdisciplinar connections

